

Daily Tutorial Sheet-1

JEE Advanced (Archive)

1.(T) I law does not predict about spontaneity of a process

2.(R)
$$C_p - C_v = R$$
 for ideal gas

3.(900) Total energy =
$$3 \times \frac{1}{2}$$
 nRT = $3 \times \frac{1}{2} \times 1 \times 2 \times 300 = 900$ Cal

4.(T)
$$C_v$$
 for diatomic gas $= \frac{5R}{2}$ C_v for monoatomic $= \frac{3R}{2}$

5. Isolated system \longrightarrow No exchange of mass and energy

6. Enthalpy is mass dependent.

7.(0) Fe(s) + 2 HCl(aq)
$$\longrightarrow$$
 FeCl₂ + H₂(g)
w = 0 (as $\Delta V = 0$)

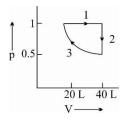
8.
$$-116.4 \text{ J}$$

$$\Delta H = nC_p \Delta T$$

$$T_1 V_1^{\gamma - 1} = T_2 V_2^{\gamma - 1} \quad \Rightarrow \quad \gamma = \frac{C_p}{C_v}$$

$$C_p = \frac{5R}{2}; \qquad C_V = \frac{3R}{2} \text{ for He Ar}$$

9.(B) Free isothermal expansion, w = 0, $\Delta U = 0 \implies q = 0$


Volume occupied by molecular of an ideal gas is zero

$$\mbox{10.} \qquad \Delta_r G^\circ = -257.2 \ kJ < 0 \ ; \quad \Delta H^\circ = -285.4 \ kJ < 0 \ ; \ \ \Delta H^\circ = -285.4 \ kJ < 0 \ ; \ \ \Delta H^\circ = -285.4 \ kJ < 0 \ ; \ \ \Delta H^\circ = -285.4 \ kJ < 0 \ ; \ \ \Delta H^\circ = -285.4 \ kJ < 0 \ ; \ \ \Delta H^\circ = -285.4 \ kJ < 0 \ ; \ \ \Delta H^\circ = -285.4 \ kJ < 0 \ ; \ \ \Delta H^\circ = -285.4 \ kJ < 0 \ ; \ \ \Delta H^\circ = -285.4 \ kJ < 0 \ ; \ \ \Delta H^\circ = -285.4 \ kJ < 0 \ ; \ \ \Delta H^\circ = -285.4 \ kJ < 0 \ ; \ \ \Delta H^\circ = -285.4 \ kJ < 0 \ ; \ \ \Delta H^\circ = -285.4 \ kJ < 0 \ ; \ \ \Delta H^\circ = -285.4 \ kJ < 0 \ ; \ \ \Delta H^\circ = -285.4 \ kJ < 0 \ ; \ \ \Delta H^\circ = -285.4 \ kJ < 0 \ ; \ \ \Delta H^\circ = -285.4 \ kJ < 0 \ ; \ \ \Delta H^\circ = -285.4 \ kJ < 0 \ ; \ \ \Delta H^\circ = -285.4 \ kJ < 0 \ ; \ \ \Delta H^\circ = -285.4 \ kJ < 0 \ ; \ \ \Delta H^\circ = -285.4 \ kJ < 0 \ ; \ \ \Delta H^\circ = -285.4 \ kJ < 0 \ ; \ \ \Delta H^\circ = -285.4 \ kJ < 0 \ ; \ \ \Delta H^\circ = -285.4 \ kJ < 0 \ ; \ \ \Delta H^\circ = -285.4 \ kJ < 0 \ ; \ \ \Delta H^\circ = -285.4 \ kJ < 0 \ ; \ \ \Delta H^\circ = -285.4 \ kJ < 0 \ ; \ \ \Delta H^\circ = -285.4 \ kJ < 0 \ ; \ \ \Delta H^\circ = -285.4 \ kJ < 0 \ ; \ \ \Delta H^\circ = -285.4 \ kJ < 0 \ ; \ \ \Delta H^\circ = -285.4 \ kJ < 0 \ ; \ \ \Delta H^\circ = -285.4 \ kJ < 0 \ ; \ \ \Delta H^\circ = -285.4 \ kJ < 0 \ ; \ \ \Delta H^\circ = -285.4 \ kJ < 0 \ ; \ \ \Delta H^\circ = -285.4 \ kJ < 0 \ ; \ \ \Delta H^\circ = -285.4 \ kJ < 0 \ ; \ \ \Delta H^\circ = -285.4 \ kJ < 0 \ ; \ \ \Delta H^\circ = -285.4 \ kJ < 0 \ ; \ \ \Delta H^\circ = -285.4 \ kJ < 0 \ ; \ \ \Delta H^\circ = -285.4 \ kJ < 0 \ ; \ \ \Delta H^\circ = -285.4 \ kJ < 0 \ ; \ \ \Delta H^\circ = -285.4 \ kJ < 0 \ ; \ \ \Delta H^\circ = -285.4 \ kJ < 0 \ ; \ \ \Delta H^\circ = -285.4 \ kJ < 0 \ ; \ \ \Delta H^\circ = -285.4 \ kJ < 0 \ ; \ \ \Delta H^\circ = -285.4 \ kJ < 0 \ ; \ \ \Delta H^\circ = -285.4 \ kJ < 0 \ ; \ \ \Delta H^\circ = -285.4 \ kJ < 0 \ ; \ \ \Delta H^\circ = -285.4 \ kJ < 0 \ ; \ \ \Delta H^\circ = -285.4 \ kJ < 0 \ ; \ \ \Delta H^\circ = -285.4 \ kJ < 0 \ ; \ \ \Delta H^\circ = -285.4 \ kJ < 0 \ ; \ \ \Delta H^\circ = -285.4 \ kJ < 0 \ ; \ \ \Delta H^\circ = -285.4 \ kJ < 0 \ ; \ \ \Delta H^\circ = -285.4 \ kJ < 0 \ ; \ \ \Delta H^\circ = -285.4 \ kJ < 0 \ ; \ \ \Delta H^\circ = -285.4 \ kJ < 0 \ ; \ \ \Delta H^\circ = -285.4 \ kJ < 0 \ ; \ \ \Delta H^\circ = -285.4 \ kJ < 0 \ ; \ \ \Delta H^\circ = -285.4 \ kJ < 0 \ ; \ \ \Delta H^\circ = -285.4 \ kJ < 0 \ ; \ \ \Delta H^\circ = -285.4 \ kJ < 0 \ ; \ \ \Delta H^\circ = -285.4$$

11.
$$\Delta G_1^{\circ} = 16 \text{ kJ}; \quad \Delta G_2^{\circ} = 12.3 \text{ kJ}$$

12.(C)
$$\Delta H = \Delta U + \Delta (pv)$$
, $\Delta H = \Delta U + (p_2 v_2 - p_1 v_1)$

- (ii) W = -6.14 L atm Q = 6.14 L atm
- (iii) All the state functions, $\Delta U, \Delta H$ and ΔS are zero for cyclic process.
- 14. He is monatomic, so it has only three degree of freedom (translational only) at all temperature hence, C_V value is always $\frac{3}{2}R$.

Hydrogen molecule is diatomic, has three translational, two rotational and one vibrational degree of freedom. The energy spacing between adjacent levels are in the order of:

Translational < rotational < vibrational

At lower temperature only translational degree of freedom contribute to heat capacity while at higher temperature rotational and vibrational degree of freedom starts contributing to heat capacity.

15.(B)
$$\Delta S = \frac{\Delta H}{T_b}$$